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1. Phys: Condens. Matler 4 (1992) 7877-7890. Printed in the UK 

Spin-density functionals for the electron correlation energy 
with automatic freedom from orbital self-interaction 

John F Dobsont 
Physia Department, Universily of California at Santa Barbara, Santa Barbara, CA 93106, 
USA 

Received 19 May 1992 

Abslmct Using two different interpretations of the wneept of lhe Fermi hole cumture,  
we derive a class of "da t ion  energy expressions for the inhomogeneous inleracting 
electron gas. Their propenies include freedom from spurious orbital seli-interaction, 
invariance under unitary transformations among occupied orbitals, correct values in the 
homogeneous limit, correctly normalized correlation hole, inclusion of kinelic energy (KE) 
as well as potential energy of correlalion, and non-vanishing values for fully spin-polarized 
systems (in contrast wilh some similar schemes developed for chemical applications). 
Minimization of the energy with rerpect to ihe orbitals leads to a Euler-Lagrange equa- 
tion resembling the Hanree-FoCk one-electron effective Schmdinger equation, with the 
addition of a term rambling the ~!3 operator for an inhomogeneous eiieclive mass. For 
currcntcaqing states there is a furlher lerm involving an effective dynamically induced 
vector polenlial. Despite these wmplications the effeclive one-eleclmn Hamiltonian is 
Hermitian, so that the canonical orbitals are onhogonal. in contrasl wifh those of the 
commonest self-inleracfion correction scheme. 

1. Introduction 

The local-density functional (LDF) and local-spin-density functional (LSDF) theories of 
the non-uniform electron gas [l-31 are widely used for atomic, molecular and solid 
state calculations but are known to suffer from a spurious interaction of a localized 
orbital with itself [4, 51. This spurious self-interaction contributes to difficulties such 
as the well known 'band-gap' problem [6, 71 in the LDF description of the electronic 
structure of insulators and semiconductors. Such difiiculties are largely removed by 
the computat-ionally convenient expedient of explicitly subtracting a sum of separate 
Hartree and exchangecorrelation (xc) [SI (or correlation [4]) energies. Such schemes 
will be referred to here as self-interaction correction (SIC) formalisms. 

In the SIC scheme of Perdew and Zunger (PZ) [SI the subtraction is done separately 
for each orbital, which has the advantage of allowing separate effective potentials for 
the valence and conduction bands, thus helping to alleviate the above-mentioned 
band-gap problem. This prescription for the SIC has the somewhat disconcerting 
feature that its predictions are not invariant under a unitary transformation among 
the occupied orbitals. For example, the spin density generated by a full band of 
Bloch orbitals is identical with that from a full lattice of the corresponding Wnnier 
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functions. The PZ prescription, however, gives a non-zero SIC only for the Wannier 
case. This leads to some difficulties with extended systems and even for the uniform 
electron gas on which the theory is presumably based IS, 91. In the Pzscheme there is 
also a ‘slight but annoying’ non-orthogonality of the canonical effective oneelectron 
orbitals. 

By contrast, Hanree-Fock (HF) theory, while not accounting for correlation, is 
explicitly free of orbital self-interaction terms, since they cancel between the direct 
and exchange energy expressions. Furthermore, the HF energy is easily shown to be 
invariant under any unitary transformation among occupied orbitals (to prove this, 
one merely notes that the determinantal wavefunction itself has this property). Thus, 
HF computations retain their freedom from unwanted self-interaction regardless of the 
basis used for calculation. Also, the HF effective oneelectron Hamiltonian, although 
non-local, is Hermitian so that the canonical orbitals are mutually orthogonal. 

It is desirable to retain these positive HF features in a theory which incorporates 
correlation as well as exchange. A promising class of theories are those which mull@& 
the HF pair distribution by a correlating factor. In this vein, the ‘closed- and open- 
shell’ theory of Colle and Salvetti [IO] is free of orbital self-interaction but does not 
formally account for the kinetic correlation energy. (The numerical implementation 
of [lo], however, appears to fit a parameter to the known correlation energy of He, 
which of course does contain a kinetic component and, probably as a result of this, 
Collc and Salvetti obtain very good correlation energies for small atoms). The Collc- 
Salvctti correlation hole is normalized only in an approximate and averaged fashion. 
From the standpoint of magnetic properties of solid state systems a more serious 
drawback of [IO] is that it predicts zero correlation energy for a fully spin-polarized 
system, in qualitative disagreement with the known properties 1111 of the uniform 
electron gas. Dobson and Rose [12] proposed a somewhat similar theory with proper 
account of kinetic correlation and of the spin-polanzed limit, but this theory was not 
pursued numerically because it violated correlation hole normalization. 

In the SIC scheme of Stoll et a1 [4] the exchange energy is assumed known. 
LSDF theory is used for the correlation energy, but correlation between electrons 
of like spin orientations (which of course contains among other contributions the 
spurious self-interaction) is removed by subtracting the LSDF correlation energies of 
totally spin-polarized uniform electron gases. Since this theory does not deal with the 
individual orbitals but rather the total density n ( ~ ,  s) of a given spin orientation, it 
is invariant under a unitary transformation among occupied orbitals. The removal of 
parallel-spin correlations may be reasonable in atoms and small molecules but it is not 
reasonable for solid state applications; in the latter case the close spacing of energy 
levels and correspondingly high polarizability causes stronger correlations, even for 
like spins where thc Pauli principle operates. 

The present paper describes a class of functionals with all the desirable formal fca- 
tures just discussed. W e  start with the exact direct (Hartree) plus exchange Coulomb 
energy and make a type of local-density approximation for the remaining correlation 
energy; this can be related to the form of the correlation hole around an electron. 
The essential ingredient here is a special choice for the spin density h(r ,  s) of the fic- 
titious uniform gas whose correlation hole is used to mimic that of an inhomogeneous 
many-electron system. This choice is based on the notion of ‘other’ electrons or on 
explicit ‘pair‘ quantities and is realiid mathematically via the ‘Fermi hole cumature’ 
[13, 17) This special choice of h ensures that the correlation energy is free from 
orbital self-interaction. Once i5 is chosen, the approach is somewhat similar to the 
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usual derivation [14, 31 of LSDF theory by consideration of the uniform-gas Xc holes 
for a range of Coulomb interaction strengths A. Here, however, the full exchange 
energy is retained, a local-density approximation being made only for the correlation 
term. The functionals which emerge turn out to be quite similar to those proposed 
by Becke [15, 161 and by Stoll el ul [17]. The details of the new functionals are 
different from these earlier formulae, however, and new physical interpretations are 
given here which permit generalization in a number of directions. Schrodinger-like 
Euler-Lagrange equations are also discussed here for the first time for functionals in 
this class. 

We assume for simplicity that all orbitals have a common axis of spin quantization, 
so that each orbital is either 'up' (T,s = i) or 'down' (1, s = -$). Before formally 
constructing the modified spin density f i (~,  s) it is useful to consider some limiting 
cases. 

Case ( I ) :  For a single spin-up electron in the ground state of an external potential 
(e.g. the hydrogen atomic ground state) there is of course no correlation hole; there 
is a zero spin-down density and a zero density of 'other' spin-up electrons in which 
the single electron can cause a hole. Thus the uniform gas employed in mimicking 
the correlation hole should have zero spin-up and spin-down densities. 

Case (2): Similarly for a two-electron paramagnetic state such as the helium 
ground state, an electron of either spin 'sees' no density of 'other' electrons of the 
same spin in which it could cause a hole. Therefore, to mimic the correlation hole 
around an electron of spin s, we should use a uniform gas with a zero density 
+is = 0 of spin-s electrons but a non-zero density n-" = n ( ~ ,  -s) of the opposite 
spin, where n ( r , - s )  is the true spin density of the inhomogeneous system. Thus we 
shall be dealing with the hole around an isolated spin-s electron in a gas of electrons 

Case (3): For the lithium (TT1) ground state, the best choice of a spin-up density 
fi, would be a value less than the local value of n(~, 7 )  in the inhomogeneous system; 
this reflects the fact that there is only one 'other' spin-up electron, and not two. 

of spin (4). 

2. A correlation functional based on the number of 'other' nearby electrons 

?b generalize the above ideas in a spatially local fashion, we consider a non-interacting 
reference state ID) = det[qi(r, s)] consisting of the determinant of onebody Kohn- 
Sham-like or HF-rike orthonormal spin orbitals. For this reference state the normal- 
ordered pair distribution .?Fo defined in general by 

n p ( T ,  s : T' , s') (16 t ( T ,  8 )  6t( T' , s') & ( 7 - 1 ,  s') 6 ( T ,  s) I) (1) 
takes the value 

Note that (1) and (2) both vanish when s = s' and r = T' .  The normalization 
property of (1) and (2) is 

/nyo(r,s : r ' , s ' ) d 3 p ' = ( N S ,  - 6 , , , ) n ( ~ , s )  (3) 
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where n ( r , s )  is the spin density at r,  and N, is the total number of spin-s electrons. 
Note that (l), (2) and (3) are all identically zero in a one-electron state. 

The probability of finding a spin-s electron at r and simultaneously ‘another’ 
spin-s‘ electron within radius R of r is found by integrating (1) or (2) with respect 
to r’. We are thus led to define the number of ‘other’ spin-s’ particles within radius 
R of a given spin-s electron located at r by 

NR(s ‘ l r , s )  = n(r , s ) - ’  B ( R -  lul)n,N0(r,s;r+u,s’)d3u. (4) 

As R -+ 00 this approaches N,, - 6,,, , while for R -, 0 a 3D Bylor expansion in the 
variable U gives 

NR(s’ l r , s )  N n(r , s ) - ’ [ (4?rRS/3 )n~’ ( r , s :  r,s’) 

J 

R-0 

(54 + (2rR5/15)V r2 n2 NO ( r , s ; r ’ , s ’ ) l+p  + O(R7)]. 
The terms containing even powers of R vanish because of the spherical symmetry of 
the integration region. Equation (Sa) can be evaluated in the reference determinant 
ID), giving to lowest non-vanishing order in R, 

N g (  S‘lT, s) 

The summation on the right-hand side of equation (56) is the ‘Fermi hole curvature’ 
1131 Vf2nYo(r, s : T ’ ,  s)[,,,=, evaluated for the reference determinantal state ID). 
For a uniform electron gas the Kohn-Sham-like orbitals are plane waves, and (5b) 
becomes (with IC,, the Fermi wavenumber for spin s) 

By equating (Sc) and (56) we find the spin density n,, of a uniform gas whose refer- 
ence state has the same number of ‘other’ spin-s’ electrons in a small neighbourhood 
of a given spin s at T ,  as does the reference state ID) of the inhomogeneous system 
under study. For unlike spins (s‘ = -s) the R5-term is negligible as R -+ 0, and we 
obtain the trivial result n-,  = n(r ,  -e.) reflecting the fact that all eIectmns of unlike 
spin are ‘other’ electrons. For l i e  spins, however, the R3-term is identically zero 
and, matching the R5-terms, we obtain the following non-trivial result: to achieve the 
same number of ‘other’ nearby electrons as are present in the reference determinant 
state of the inhomogeneous system, a uniform gas will need to have a spin density 
n, = C A ( r , s )  where 

~(6r2)a’3iL,,(r,s)5’3= n(r,8)-’$ I q j ( r , s ) V q j ( r , s ) -  { i  + + j ) I 2  (6a) 
i ,jocc 
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and 

n ( r , s )  = C IV;(C, s)12. (66) 
iocc 

Note that ia,(~, s) (equation (Q)) is zero in a one-electron state; there are no 'other' 
spin-s electrons for that case. 

In the spirit of LDF theory, we now approximate the normal-ordered pair distri- 
bution of the interacting inhomogeneous system as follows: 

nro(r , s :  T' ,s ' )  - n : % ( ~ , s  : T ' , s ' )  

+n(r,s)g*(s'ls : I T - T ' ~ :  %,(r,s),n(r,-s)) .  (7) 
Here the HF-rike term n?$ is built from the KohnSham-like orbitals as in equa- 
tion (Z), while the correlation correction is built from the correlation hole 

gu(S'lS : T : R T , ~ ~ ~ ) E ~ ~ ( S ' ~ S : T  : n l , n t )  (8) 
in the spin-s' density at T in a uniform interacting spin-polarized electron gas, because 
of the presence of a spin-s electron at r = 0. In (7), note that the modified density 
ia, from equation (Q) is required only for the 'like-spin' density of the uniform 
gas; the 'opposite' spin (-s) has the regular density n( t ,  -s) from equation (a), 
as discussed immediately prior to equation (6). The reasonableness of this choice is 
readily seen from the examples of the H, He and Li ground states discussed above. 
Alternative choices are discussed in section 6 below. 

A Coulomb integration over the approximate pair distribution (7) will give an 
approximate potential energy contribution to the correlation energy of the inhomoge- 
neous system. To include the kinetic part of the correlation energy, however, we need 
to replace the Coulomb interaction by Xe2/rI2 and then to perform a X integration 
while applying a Xdependent local external potential in order to hold the spin density 
constant [3, 141. When this is done, we obtain an approximate expression for the 
total energy of the inhomogeneous interacting system as a functional of the set of 
one-body trial orbitals {pi}: 

E % EHFIIp;)l + EZ{p;lI. (9) 
Here EHF is the HF (kinetic, external, direct and exchange) energy generated by the 
{pi), while the first of our new correlation energy functioLals is 

E; = / d r  n ( r ,  s)eu(s, %,(T,  s ) , n ( ~ ,  -s)). (10) 

In (lo), CA is the modified density defined in equation (Q), while 

is the (kinetic plus potential) correlation energy contribution in a uniform spin- 
polarized electron gas, arising from the correlation hole around one of the spin-s 
electrons. 

Apart from built-in freedom from spurious orbital self-interaction, the correlation 
energy functional defined by (10) has a number ol  other desirable properties which 
it shares with a second functional, E;, introduced in the following section These 
properties are enumerated in section 5, after EL has been defined. 
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3. A functional based on pair kinetic energy density 

A second, alternative correlation functional may be derived by considering not the 
number of 'other' electrons near a given electron, but rather the density of the rehrive 
kinetic energy (KE) of pairs of electrons at a given position T. This notion can be. 
made more specific [13] by introducing the normal-ordered Wigner pair distribution 

fFo(~l,klrS1 : r 2 , k 2 , s z )  = ( 2 ~ ) - 6 ~ d d 3 € 1 d 3 E z e x ~ [ i ( ~ l  . E 1  t b2.Ez)l 

x (I@+(q t fE1)$+(r2  t ; t 2 ) @ ( ~ ,  - &,)@(TI - ;&)I). (12) 

Within the limits imposed by the uncertainty principle, we may interpret fz as the 
probability density for finding an electron at position r1 with momentum hk, and spin 
projection s1, and simultaneously a differenr electron'at position r2 with momentum 
hk, and spin projection 5,. Thus f, is a quantum generalization of the classical pair 
distribution function and has many corresponding properties. For example, when fz 
is integrated with respect to k, and kz the normal-ordered pair distribution (1) is 
recovered. If fz is integrated with respect to r1 and r2 the normal-ordered two-body 
momentum distribution (ltL,6L2,Ek22k, I) is recovered. A less convenient feature of 
fi is that it is not positive definite, which renders less meaningful the interpretation 
as a probability density. A further feature relative to the present discussion is that fz, 
unlike the pair density .yo, does not vanish when (r,,sl) = ( r2 , s2 ) .  This can be 
understood from the uncertainty principle; specification of k, and kz has rendered 
r1 and rz 'fuzzy'. 

An expected density (per unit volume squared) of relalive KE of pairs located near 
r may be defined by an average over the Wigner distribution: 

where the factor $ corrects for double counting under interchange of labels 1 and 2. 
This quantity is readily evaluated for a single determinantal state, and for like spins 
it takes a value proportional to the Fermi hole curvature C(T,  s )  of equation (5b) 
(see also [U]): 

Being an expectation of a pair quantity, equation (I&) naturally vanishes in a 
one-electron state. Its value for a uniform HF electron gas (built from plane-wave 
orbitals and having spin densities n, and n,) is 

tHF(s,s) 2,U = ni$eFs = ( h Z / 2 m ) $ ( 6 n 2 ) 2 / 3 n ~ / 3 ,  (1W 

Thus, if we have computed the pair Kf? density tFF(r, s ,  s )  at point r for an inho- 
mogeneous system using HF-like orbitals (y;} as in equation (14a), we can find the 
spin density fig of a fictitious uniform gas having the same pair KE density in the HF 
approximation: 

f iB(r ,  s,s) = [ ~ ( 6 s 2 ) - 2 / 3 ( 2 m / h 2 ) 1 ~ F ( r ,  s,s)J3/*. (15) 
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This can also be written 

~ ( 6 * 2 ) 2 / 3 [ j i B ( ~ , ~ , ~ ) ] 8 ’ 3  = l$i(r,s)V$j(v,s) - 4j(r,~)V+i(~,~)12.(16) 

Here, as for the density 6, defined in the previous section, the result involves the 
Fermi hole cuwature [13] (the summation on the right-hand side of (16)). 

i,jocc 

The second of our correlation functionals, which we shall call Eb, is then 

EZIlo;ll= /dv Cn(T,S)€U(S,iLB(r,S)rn(rr-S)) (17) 

where iiB is given by (16) and by (11); the arguments leading to this expression are 
identical with those leading to our first correlation functional EL (see the discussion 
prior to equation (9)). Equation (16) is analogous to equation (6a) above except that 
the true density n in (&) is replaced by a factor of ii in going from (Q) to (16). 
Thus the effective density iiB in (16) is not as small as the effective density ii, from 
(Q), in the case of a relatively isolated electron for which the effective densities ii 
are much less than the true density n. Nevertheless ii, and jig both quite properly 
vanish for a strictly one-electron problem. A number of other desirable properties 
also hold for both ,Ei and Efi. These are listed in section 5. 

4. Euler-Lagrange equations 

?b implement the present theory using either the functional for scheme A (equa- 
tions (9) and (10)) or the functional for scheme B (equation (17)), one could follow 
one of two strategies. 

(i) Where SIC effects are expected to be fairly small, one could take the {&} to be 
self-consistent LSDF or unrestricted Hartree-Fock (UHF) orbitals without minimizing 
the functionals explicitly. The UHF orbitals may be better in that they already contain 
important elements of self-interaction correction. 

(ii) More accurate answers, especially where orbital self-interaction is important 
as in semiconductor calculations, will presumably be obtained from orbitals which 
minimize the respective functionals. The corresponding Euler-Lagrange equations 
are of modified HF form and will now be derived. 

Schemes A and B derived in sections 2 and 3 above both give a total energy of 
the form 
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while, for scheme B, 

WJC, n,,n-,) = n8cu(s,[cr~]3/8, n-s ) .  (20) 

In (18)-(20), a = % ( 6 ~ ~ ) - ~ / ~ ,  ~ ~ ( s , n , , n - ~ )  is the spin-specific correlation hole 
energy of a uniform polarized electron gas from equation (ll), and 

c(+, s) = ipi(r, s) Vlpj(r, s) - {i ,+ j}12 (21) 
i,jocc 

is the Fermi hole curvature 1131 evaluated in the reference determinantal state ID) = 
det{p;}. After some algebra 1181 one can re-express C(T, s) as 

C(r,s) = (4m/ha)[n(v, s ) t ( r , s )  - h2/8mlVn(+, s) la  - (m/2)1J(r,s)12] 

where 

(22) 

is one version of the kinetic energy density of spin-s electrons at T ,  and 

is the Schrljdinger current density of electrons of spin projection s. In a standard 
calculus-of-variations approach, we consider the change in the correlation energy Ec 
(equation (186)) when we make a small change 6pP;(r, s) in the I t h  orbital: 

In the last term the change 6C in the Fermi hole curvature is, from equations (21)- 
(24L 

6C(r, s) = 4mh-21pp,6p: f 2nVpr. V{6pP;) - Vn . [p,V{dpP;} + Vp,dp;] 

- 2m(tii)-'J.  [Vp16pP; - prV{6pP;}] 

where the arguments ( r , s )  are understood on n ,  pr,p;, t and J .  Then after an 
integration by parts (i.e. use of Green's theorem) on all terms involving V{6p;} we 
obtain a result for the total energy change in the form 

6E =6EHF+6EC = z / [ F j ' F ( r , s ) +  q(r,s)]6p;(r,s)d3r. 
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The orbitals 'p which minimize the energy will lead to a zero variation 6E for 
arbitrary variations 6'pp; (subject to the constraint of orthonormality, imposed by 
a set of Lagrange multipliers e i j ) ,  giving FFF(r,  s) t F;(r, s) - cIJ'pJ = 0. 
This leads to the following HF-like Euler-Lagrange equation with an additional local 
correlation potential Vc and two further terms. These are reminiscent of the KE due 
to an inhomogeneous inverse effectivemass correction A p ( r ,  s), and the interaction 
with a fictitious vector potential u(r ,  s): 

{AHF + Vc(r,s) + ip .  Ap(r ,  s ) P  - f [a ( r , s )  * P t P -  a(r ,s)]] 'p;(r ,s)  

= C E i j p j ( T , S ) .  (2% 
j 

Here 

VC(r,s) = a(ws t w- , ) /WT,s )  

t ( 4 m / W ~ , s )  aw,/ac, + V. [(aw,/ac,)vn(r,s)] ( B b )  

a ( r , s )  = (4m/ii2)(aw,/aC,)J(r,s) ( S c )  

( S e )  

P = ( h / i ) V ,  is the momentum operator, which is understood to act on all other 
quantities multiplied to its right. 

Equation ( S a )  is not in canonical form, in the sense that the 'energy' (Lagrange 
multiplier) c i j  on the right-hand side is not diagonal, but E can be diagonalized by 
a unitary transformation. However, a unitary transformation between the { 'p i }  is 
well known to leave the HF operator invariant in form. It also leaves the rest of the 
effective Hamiltonian, namely AI? = I?totw - fiHF on the Idft-hand side of equa- 
tion ( S a )  invariant, because the only quantities in AI? involving the orbitals are the 
spin density n( r ,  s), the !a density f ( r ,  s) (equation (23)). the Fermi hole curvature 
C(r ,  s) (equation (22) or (21)) and the Schrbdinger current (equation (24)); each 
is evaluated in the reference determinantal state ID) = detip;}; but this reference 
determinant is itself invariant under a unitary transformation among the { 'pi} ,  so 
that the ZIOn-HF terms on the left-hand side of equation (2%) are indeed invariant. 
This means that the Euler-Lagrange equations (Sa )  can be brought by a unitary 
transformation to the 'canonical' (diagonal) form 

{BHF+vc+ $ P - a p P -  $ ( a . P + P - a ) } ' p i ( T , s )  = c j p j ( r , s )  (26) 
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in which the right-hand side does not mix the orbitals, and VC, Q and Ap are as in 
equations (256)-(25d), unmodified. Furthermore, the HF Hamiltonian fiHF is well 
known to be Hermitian, and the additional Hamiltonian terms are also readily shown 
to be Hermitian. The latter follows because the  momentum P and the real local 
(multiplicative) operators Q(T, s) and Ap(r ,  s) are Hermitian, and the combinations 
A B A  and A B  + &A of Hermitian operators A and b are Hermitian in general. 
Thus the eigenvalue ci in (26) is real and the {pi} are orthogonal for unequal ci. 
By contrast, this desirable orthogonality is not preserved in the standard PZ [SI I D F  
SIC formalism, which has othenvise proved very useful. 

" I  I 

5. Properties of functionals E i  and E& 

The correlation functionals E.?+ and E; defined in sections 2 and 3 have the following 
desirable properties. 

(a) Freedom fiom orbifal self inferaclion: for a single orbital z of spin s, both 
the modified spin density cA(r,s)  of equation (Q) and the regular spin density 
n ( ~ ,  -s) of equation (6b) vanish; so (10) contains as a factor the correlation energy 
per particle of a zero-density uniform gas, which is zero. Similarly, for scheme B, 6, 
(equation (15)) vanishes and hence so does E; (equation (17)). 

(b) Invariance under a unifay fransformalion among occupied orbilals: a deter- 
minantal state is well known to have this invariance properly. Now the spin density 
nA(., s) and the pair distribution n:$ of equation (2) (from which EA is constructed 
via (Sa) and (6)) are both expectations over a determinant ID) of orbitals {poi}. Thus 
both n and ii,, and hence the functional E; of equation (lo), are similarly invariant. 
The invariance of the remaining HF part of equation (9) has already been discussed 
in the introduction. Similar statements hold for E;. 

(c) Formally correct sparially homogeneous limif: for the uniform spin-polarized gas 
the modified spin density ii, and iiB (equations (Q) and (15)) equal the true spin 
density n(r,s) (equation (&)),so that E i  and E; (equations (IO) and (17)) reduce 
to the correlation energy of the uniform gas. This point is mentioned because the 
Colle-Salvetti [lo] functionals, which are fitted to atomic data, do not give accurate 
results in the uniform-gas limit. 

(d) Correcf!y normalized correlafion hole: the approximate correlation hole g in- 
troduced in equation (7) has the correct normalization [3], i.e. it yields zero when 
integrated over T' for Iixcd r.  This follows from the corresponding property of the 
exact uniform-gas hole, plus the fact that the spin-density arguments of g in (7) do 
not involve r'. Similar considerations hold for the functional in scheme B. 

(e) Inclusion of kineric as well aspofenfial correlation energy: this is ensured by the 
Feynman X integration in equation (11). This point is mentioned in contrast with 

(r) Non-zero correlafion energy in the ful& spin-polarized case: this point is men- 
tioned here because a related functional [lo] vanishes in the fully spin-polarized limit. 
The present theory, unlike that of [lo], should be appropriate for magnetic as well as 
non-magnetic systems. 

(g) OrfhogonnliQ of canonical minimizing orbitals: this was proved in the previous 
section. It should be noted that the most widely used SIC scheme, that of pi!, does 
not have this desirable feature. 

P I .  



SDPS for electron correlation energy 7887 

Potentially undesirable features of functionals Ex and E; include the fact that the 
equations, numerically speaking, are of HF rather than LDF KohnSham complexity. It 
should be noted, however, that the selfconsistent HF equations for an infinite crystal 
are now solvable with a standardized computer software package, at least in the spin- 
restricted case [19], so this may be less of a drawback than it would previously have 
been. Secondly, it does not appear that the original form of Koopman’s theorem 
holds for this functional, in contrast with the Dobson-Rose [12] and the pure HF 
functionals. Thirdly, it seems that, if (despite the lack of Koopman’s theorem) one 
does make so bold as to interpret the E; as excitation energies in the present schemes, 
then the characteristic HF singularity in the c( k) spectrum will appear at the Fermi 
surface in extended metallic systems. 

6. Comparison with a functional introduced by Becke 

Becke [lS] has described (and successfully tested on small atoms and molecules) 
a correlation functional based on the ‘local curvature’ of the ?IF pair distribution. 
The second approximation E; described above turns out to be almost identical with 
Becke’s functional. Thus, Becke’s work can alternatively be interpreted as introducing 
a uniform gas whose relative KE density (for like-spin pairs in the HF approximation) 
is equal to that of the non-uniform electronic system at hand. 

Becke introduced a modified density ,?. To see the equivalence between our 
fiB(r, s) and Becke’s p we note that, for non-diamagnetic states (Le. those with zero 
current density J), equation (U) leads to the following result for the Fermi hole 
curvature: 

C ( r ,  s) I+;(T, s) v+,(T,  s) - +j(p, s) V+i(r ,  s)Iz 
i,jocc 

= 2 n ( T , s ) ~ l v 5 9 i ( P , s ) l ~ -  +IVn(T,s)l2. (27) 
iocc 

Thus equation (16) above becomes identical with equation (15) of Becke [lS], showing 
that our f iB(~ , s )  is ii;, of [lS]. The only difference between Becke’s functional and 
our second functional E; above lies in the way in which the modified density 6 is 
inserted into the uniform-gas correlation data. Beckc [15] takes the correlation energy 
between electrons of a given spin orientation (e.g. T) from a uniform gas which is 
fully spin polarized (e.g. all T); good data already exist for such a gas. The correlation 
energy EtfD between unlike spins are taken by Becke to be those of conventional 
1SD theory, with the like-spin correlation energy removed according to the SIC scheme 
of Stoll ef af [4]. Thus, Becke’s correlation functional is, in the present notation, 

where eU is defined in equation (11) and j i ( ~ , s )  is jiB from equation (16). By 
contrast, our equations (17) and (10) require the correlation hole in the density of 
each spin species around (say) a spin-up electron to be that of the corresponding spin 
species in a uniform gas with a modified spin-up density ji, but an unmodified spin- 
down density nu ’lb see the distinction between this prescription and that of Becke 
we look again at two of the small-atom ground states discussed in the introduction 
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(i) First consider the hole around the spin-up electron in helium. since there are 
no ‘other’ spin-up electrons, both theories have f i L T  = 0. Thus, the present theory 
requires a knowledge of the hole around an isolated ‘test’ spin-up electron in an 
othewise entirely spm-down electron gas; this can be found in principle from a limit 
as fit -+ 0 of the corresponding hole in a uniform gas of densities ii, and nl. On the 
other hand, the hole in Becke’s theoly (identical in this case with that of Stoll et a1 
[4]) is the hole in the spin-down gas around one of the many spin-up electrons in a gas 
where both spin species have finite densities nt and nl. In Becke’s case there is thus 
additional screening of the hole in the spin-down density, due to polarization of the 
excess spin-up electrons. By a RPA or fluctuation-dissipation theorem argument, one 
might expect that this screening will reduce the up-down correlation energy E:;’. 
There is in fact no such additional screening of the hole around the single spin-up 
electron in a helium atom; so ELSD underestimates the correlation in this respect. 
However, a uniform electron gas IS much more polarizable than the electrons in He 
because the latter have discretely spaced energy levels. Thus, the uniform-gas modcl 
substantially overestimates correlation, and the undercorrelation of T J  pairs inherent 
in Becke’s scheme may actually improve the total correlation energy (compared with 
our scheme) in the case of small atoms at least. For molecular and solid state 
systems, one might imagine that it would be preferable to describe the screening 
more realistically, however, as the discrete-level effects are presumably smaller. 

(ii) Next consider the hole around a spin-up electron in Li(1s Tl,2s T). The 
uniform-gas hole invoked by equation (11) is the hole around a spin-up electron in 
a gas of spin densities fit and nl where f i t  < nt. This entails a screening of the 
hole in the spin-up density by the spin-down electrons. In the Becke approach there 
is no such screening since the hole in the spin-up density is taken from a totally spin- 
polarized gas of up and down densities 6 ,  and 0. Similarly equation (11) invokes a 
hole in the spin-down density which is screened by a reduced density fit of spin-up 
electrons, whereas the ED hole used in the Becke theory is screened by the full 
density nt. The true situation in Li is that the T electron causing the hole is not 
availablc for screening as it has already been ‘localized’ in the conditional probability 
situation envisaged in the definition of a correlation hole. Thus (by this argument 
at least), one concludes that the screening effects are more accurately treated in the 
present model than in that of Becke, provided that the effects of finite level spacing 
are ignored. 

1.1 

To summarize the present comparison, one of the modified electron densities f ig 
(equation (15)) introduced in the present work is identical with f i  of Becke [15]: the 
other version, f i A  (equation (6~)) tends to be smaller than p. Once a particular 
fi  is chosen, it seems that the present scheme (equations (IO) (or (17)) and (11)) 
for choosing a uniform reference electron gas may give a more realistic dcscription 
of the screening phenomena than the Becke prescription [15]. This advantage is, 
however, of little use for small systems for which the uniform-gas modcl inherently 
overscreens because of the neglect of finite energy level spacing. On the debit side, 
the present method requires detailed uniform-gas data concerning the separate holes 
around the two different spin species in a partially (or fully) spin polarized gas. 
Such data do not appear to be available in the literature to date, but it should 
not be too difficult to construct them, at least at the level of a %PA plus Wigner 
interpolation’. The argument just presented suggests that it will be worth pursuing 
the present type of approach for applications in solid state physics, particularly for 
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small-gap insulators, for magnetic systems with partially localized orbitals and for 
metal-insulator transitions. In all these cases, polarizability and screening effects are 
expected to be more important, and discrete-level effects less so, than they are in the 
atomic and molecular cases tested by Becke [U]. 

7. Summary and conclusions 

In summary, we have suggested several approximate expressions for the correlation 
and total energies of an interacting inhomogeneous many-electron system in t e r m  of 
a set of trial spin orbitals {pi). Specifically equations (lo), (6a) and (11) define a 
correlation functional FA based on the number of ‘other’ electrons near to a given 
electron, equations (17), (16) and (11) define a correlation functional E; based on the 
density of relative KE of electron pairs per unit volume squared, and equations (B), 
(16) and (11) define a correlation functional Ec3 similar to the m-density-based 
approach just described, but using uniform-gas data in a slightly different way. This 
turns out to be identical with a functional proposed by Becke [U]. 

If Becke’s approach to the use of uniform-gas data is adopted, then another 
functional emerges; this is based on the number of ‘other’ nearby electrons as defined 
by equations (h), (11) and (28) (Le. it is the Becke scheme with EA(r,  s) rather than 
fiB(rrs) in place of fi(r,s) in (28)). This functional was not written out explicitly 
in the text above but it could be denoted Eh. 

The same computer program [15] used to test Becke’s functional Ec3 could 
presumably be modified rather easily to test the above functional Ef, on atoms and 
small molecules. Rsting of the functionals EL and Efr will not be so easy, because 
they require detailed data for the spin-polarized uniform electron gas which do not 
appear to be available as yet in the literature. (For example, in the case of the He 
ground state, one needs the correlation energy due to deflection of a spin-up electron 
gas by a single ‘test’ spin-down electron.) The advantage to be gained by using ES, 
and Efr is that they probably describe screening effects more reasonably than Ec3 and 
Ef, do, provided of course that uniform-gas screening is a reasonable approximation 
for the non-uniform problem under study. This is more likely to be so for solid state 
problems than for atomic cases. In atomic systems the discrete spacing of the energy 
levels means that a uniform-gas approximation neccessarily overcorrelates, since its 
continuous energy levels lead to a polarizability which is much too large. 

All the functionals introduced in the present work are free of orbital self- 
interaction in the sense that they give vanishing correlation energy for a single-electron 
state. They achieve this while maintaining invariance under a unitary transformation 
among occupied orbitals, unlike the PZ self-interaction correction scheme [SI which 
has proved useful and practical for solid state calculations except for this non- 
invariance problem. This feature of the new schemes should be an advantage for 
electronic band-structure calculations in periodic solids where the requirement to use 
localized functions in the PZ scheme is at the very least inconvenient. Despite the 
above improvement with regard to self-interaction the present schemes automatically 
satisfy the xc hole normalization requirement without the need for explicit integral 
constraints. This latter feature is shared by the ‘average density’ scheme of Gunnars- 
son et a1 [Zl], although not by their ’weighted-density’ approximation 1201. On the 
debit side, the present schemes require a full UHF energy evaluation for the chosen 
orbitals before the new correlation functionals can be added to yield an xc energy. 
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If this is not done, the exact SIC and invariance properties are lost. Functionals of 
the type proposed here lead via a variational procedure to Euler-Lagrange equations 
which are Schrddinger-like and involve non-local self-consistent fields which general- 
ize the HF field. Other desirable features of the present class of functionals are listed 
in section 5 above; one such feature is the orthogonality of the canonical orbitals 
satisfying the Euler-Lagrange equation. This desirable feature is not shared by the 
standard PZ LDF SIC scheme. 

A functional of the general type proposed here has already been tested with 
some success 1151 for the correlation contribution to dissociation energies of small 
molecules. HF methods are now practicable for band problems also [19]; so functionals 
for correlation alone, such as those introduced here, should play a useful role in future 
studies of solid state systems. Problems which suggest themselves particularly as being 
sensitive to SIC phenomena include semiconductor band gaps, localization problems 
involving magnetism, metal-insulator transitions and Wigner crystallization. 
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